ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-23
    Description: Background and aims Plant growth is frequently limited by the availability of inorganic phosphorus (P) in the soil. In most soils, a considerable amount of the soil P is bound to organic molecules. Of these, phytate is the most abundant identifiable organic P form, but is not readily available to plants. In contrast, microorganisms have been shown to degrade phytate with high efficiency. The current study aims to characterize the members of the phytate-hydrolysing bacterial community in rhizosphere, and the molecular and enzymatic ability of these bacteria to degrade phytate. Methods and results The phytate-hydrolysing bacterial community was characterized from the rhizosphere of plants cultivated in the presence or absence of phytate supplementation. Major changes in the bacterial community structure were observed with both culture-dependent and -independent methods, which highlighted the predominance of Proteobacteria and Actinobacteria . Phytase activity was detected for a range of rhizobacterial isolates as well as the presence of, β -propeller phytases (BPP) for both isolates and directly in a soil sample. Conclusion A wide taxonomic range of functional phytate utilizers have been discovered, in soil bacterial taxa that were previously not well known for their ability to utilise phytate as P or C sources. This study provides new insights into microbial carbon and phosphorus cycling in soil.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...