ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-19
    Description: Insulin resistant diabetes, currently at epidemic levels in developed countries, begins in the skeletal muscle and is linked to altered protein turnover. microRNAs downregulate targeted mRNA translation decreasing the amount of translated protein, thereby regulating many cellular processes. Regulation of miRNAs and their function in skeletal muscle insulin resistance is largely unexplored. The purpose of this study was to identify the effects of insulin resistance on contents of skeletal muscle miRNAs with potential functions in protein turnover. We examined miRs -1, -16, -23, -27, -133a, -133b and -206 in muscles of Zucker rats. miR-1 was 5-10 fold greater in obesity, while miRs-16 and -133b were repressed ∼50% in obese compared to lean rats, with no other alterations in miRNA contents. miR-16 correlated to protein synthesis in lean, but not obese rats. miR-16 reduction by lipid overload was verified in-vivo by diet-induced obesity and in-vitro using a diacylglycerol analog. A role for miR-16 in protein turnover of skeletal myocytes was established using transient overexpression and anti-miR inhibition. miR-16 overexpression resulted in lower protein synthesis (puromycin incorporation, ∼25-50%), mTOR (∼25%) and p70S6K1 (∼40%) in starved and insulin stimulated myoblasts. Conversely, anti-miR-16 increased basal protein synthesis (puromycin incorporation, ∼75%), mTOR (∼100%) and p70S6K1 (∼100%). Autophagy was enhanced by miR-16 overexpression (∼50% less BCL-2, ∼100% greater LC3II/I, ∼50% less p62) and impaired with miR-16 inhibition (∼45% greater BCL-2, ∼25% less total LC3, ∼50% greater p62). This study demonstrates reduced miR-16 during insulin resistance and establishes miR-16 control of protein accretion in skeletal muscle. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...