ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-06
    Description: Comparisons of collocated Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) ice cloud optical thickness (τ) and effective radius (r e ) retrievals and their uncertainty estimates are described at the pixel-scale. While an estimated 27% of all AIRS fields of view contain ice cloud, only 7% contain spatially uniform ice according to the MODIS 1-km optical properties phase mask. The ice cloud comparisons are partitioned by horizontal variability in cloud amount, cloud-top thermodynamic phase, vertical layering of clouds, and other parameters. The magnitudes of τ and r e and their relative uncertainties are compared for a wide variety of pixel-scale cloud complexity. The correlations of τ and r e between the two instruments are strong functions of horizontal cloud heterogeneity and vertical cloud structure, with the highest correlations found in single-layer, horizontally homogeneous clouds over the low-latitude tropical oceans. While the τ comparisons are essentially unbiased for homogeneous ice cloud with variability that depends on scene complexity, a bias of 5–10μm remains in r e within the most homogeneous scenes identified, consistent with known radiative transfer differences in the visible and infrared bands. The AIRS and MODIS uncertainty estimates reflect the wide variety of cloud complexity, with greater magnitudes in scenes with larger horizontal variability. The AIRS averaging kernels suggest scene-dependent information content that is consistent with infrared sensitivity to ice clouds. The AIRS normalized-χ 2 radiance fits suggest that accounting for horizontal cloud variability is likely to improve the AIRS ice cloud retrievals.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...