ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-16
    Description: The low energy continuum limit of graphene is effectively known to be modeled using the Dirac equation in (2 + 1) dimensions. We consider the possibility of using a modulated high frequency periodic driving of a two-dimensional system (optical lattice) to simulate properties of rippled graphene. We suggest that the Dirac Hamiltonian in a curved background space can also be effectively simulated by a suitable driving scheme in an optical lattice. The time dependent system yields, in the approximate limit of high frequency pulsing, an effective time independent Hamiltonian that governs the time evolution, except for an initial and a final kick. We use a specific form of 4-phase pulsed forcing with suitably tuned choice of modulating operators to mimic the effects of curvature. The extent of curvature is found to be directly related to ω −1 the time period of the driving field at the leading order. We apply the method to engineer the effects of curved background space. We find that the imprint of curvilinear geometry modifies the electronic properties, such as LDOS, significantly. We suggest that this method shall be useful in studying the response of various properties of such systems to non-trivial geometry without requiring any actual physical deformations.
    Print ISSN: 1434-6028
    Electronic ISSN: 1434-6036
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...