ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-27
    Description: The effects of removing the AlGaN electron blocking layer (EBL), and using a last quantum barrier (LQB) with a unique design in conventional blue InGaN light-emitting diodes (LEDs), were investigated through simulations. Compared with the conventional LED design that contained a GaN LQB and an AlGaN EBL, the LED that contained an AlGaN LQB with a graded-composition and no EBL exhibited enhanced optical performance and less efficiency droop. This effect was caused by an enhanced electron confinement and hole injection efficiency. Furthermore, when the AlGaN LQB was replaced with a triangular graded-composition, the performance improved further and the efficiency droop was lowered. The simulation results indicated that the enhanced hole injection efficiency and uniform distribution of carriers observed in the quantum wells were caused by the smoothing and thinning of the potential barrier for the holes. This allowed a greater number of holes to tunnel into the quantum wells from the p-type regions in the proposed LED structure.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...