ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-11
    Description: Uncertainties in calculating precipitation climatology in East Asia Hydrology and Earth System Sciences Discussions, 12, 7765-7783, 2015 Author(s): J. Kim and S. K. Park This study examines the uncertainty in calculating the fundamental climatological characteristics of precipitation in the East Asia region from multiple fine-resolution gridded analysis datasets based on in-situ rain gauge observations. Five observation-based gridded precipitation datasets are used to derive the long-term means, standard deviations in lieu of interannual variability and linear trends over the 28-year period from 1980 to 2007. Both the annual and summer (June–July–August) mean precipitation is examined. The agreement amongst these precipitation datasets are examined using multiple metrics including the signal-to-noise ratio (SNR) defined as the ratio between long-term means and the corresponding standard deviations, and Taylor diagrams which allows examinations of the pattern correlation, the standard deviation, and the centered root mean square error. It is found that the five gauge-based precipitation analysis datasets agree well in the long-term mean and interannual variability in most of the East Asia region including eastern China, Manchuria, South Korea, and Japan, which are densely populated and have fairly high density observation networks. The regions of large inter-dataset variations include Tibetan Plateau, Mongolia, northern Indo-China, and North Korea. The regions of large uncertainties are typically lightly populated and are characterized by severe terrain and/or extreme high elevations. Unlike the long-term mean and interannual variability, agreements between datasets in the linear trend is weak, both for the annual and summer mean values. In most of the East Asia region, the SNR for the linear trend is below 0.5, i.e., the inter-dataset variability exceeds the multi-data ensemble mean. The uncertainty in the spatial distribution of long-term means among these datasets occurs both in the spatial pattern and variability, but the uncertainty for the interannual variability and time trend is much larger in the variability than in the pattern correlation. Thus, care must be taken in using long-term trends calculated from gridded precipitation analysis data for climate studies over the East Asia region.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...