ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-06-08
    Description: Publication date: Available online 4 June 2015 Source: Cell Reports Author(s): Jan-Philipp Mallm , Karsten Rippe Non-coding RNAs can modulate histone modifications that, at the same time, affect transcript expression levels. Here, we dissect such a network in mouse embryonic stem cells (ESCs). It regulates the activity of the reverse transcriptase telomerase, which synthesizes telomeric repeats at the chromosome ends. We find that histone H3 serine 10 phosphorylation set by Aurora kinase B (AURKB) in ESCs during the S phase of the cell cycle at centromeric and (sub)telomeric loci promotes the expression of non-coding minor satellite RNA ( cen RNA). Inhibition of AURKB induces silencing of cen RNA transcription and establishment of a repressive chromatin state with histone H3 lysine 9 trimethylation and heterochromatin protein 1 accumulation. This process results in a continuous shortening of telomeres. We further show that AURKB interacts with both telomerase and cen RNA and activates telomerase in trans . Thus, in mouse ESCs, telomere maintenance is regulated via expression of cen RNA in a cell-cycle-dependent manner. Graphical abstract Teaser Mallm and Rippe find that AURKB kinase and centromeric RNA regulate telomerase activity. AURKB phosphorylates serine 10 of histone H3 at chromosome p-arms during S phase in embryonic stem cells to induce centromere repeat transcription. Together, AURKB and centromere transcripts activate telomerase and ensure telomere maintenance.
    Electronic ISSN: 2211-1247
    Topics: Biology
    Published by Elsevier on behalf of Cell Press.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...