ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-12
    Description: Flexoelectricity, representing the coupling between electrical polarizations and strain gradients, should be taken into account in the analysis of electromechanical responses of nanostructures where large strain gradients are expected. In this paper, we will explore the influence of flexoelectricity on the electromechanical coupling behavior of a simply supported piezoelectric nanoplate by using the Kirchhoff plate theory. The governing equations and corresponding boundary conditions are deduced from Hamilton’s principle, and the analytical solutions are obtained for the deflection and natural frequency. The results indicate that the deflections predicted by the present model are smaller than those calculated by the classical one which only considers piezoelectricity, while the frequencies exhibit the opposite trend. In addition, the flexoelectric effect is more prominent for thinner plates; the differences of the deflections or frequencies between the two models are gradually diminishing with an increase in the plate thickness. The current work may contribute to the understanding of the higher-order electromechanical coupling mechanism. Moreover, the modified plate model can be utilized to accurately design novel piezoelectric nanoplate-based sensors in nanoelectromechanical systems.
    Print ISSN: 0001-5970
    Electronic ISSN: 1619-6937
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...