ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association of Petroleum Geologists (AAPG)
    Publication Date: 2015-05-05
    Description: This paper reviews the hydrocarbon-retaining properties of overpressured reservoirs and discusses the mechanisms for petroleum accumulation, preservation and loss in overpressured reservoirs, and the factors controlling hydrocarbon column heights in overpressured traps. Four types of overpressured traps (filled, underfilled, unfilled, and drained) are recognized. The diversities in petroleum-bearing properties reflect the complexities of petroleum accumulation and leakage in overpressured reservoirs. Forced top seal fracturing, frictional failure along preexisting faults, and capillary leakage are the major mechanisms for petroleum loss from overpressured reservoirs. The hydrocarbon retention capacities of overpressured traps are controlled by three groups of factors: (1) factors related to minimum horizontal stress (tectonic extension or compression, stress regimes, and basin scale and localized pressure–stress coupling); (2) factors related to the magnitudes of water-phase pressure relative to seal fracture pressure (the depth to trap crest, vertical and/or lateral overpressure transfer, mechanisms of overpressure generation); and (3) factors related to the geomechanical properties of top seals or sealing faults (the tensile strength and brittleness of the seals, the natures and structures of fault zones). Commercial petroleum accumulations may be preserved in reservoirs with pressure coefficients greater than 2.0 and pore pressure/vertical stress ratios greater than 0.9 (up to 0.97). The widely quoted assumption that the fracture pressure is 80%–90% of the overburden pressure and hydrofracturing occurs when the pore pressure reaches 85% of the overburden pressure significantly underestimates the maximum sustainable overpressures, and thus, potentially the hydrocarbon-retention capacities, especially in deeply buried traps. Lateral and/or vertical water-phase overpressure transfer from deeper successions plays an important role in the formation of unfilled and drained overpressured traps. Traps in hydrocarbon generation-induced overpressured systems have greater exploration potential than traps in disequilibrium compaction-induced overpressured systems with similar overpressure magnitude.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...