ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-23
    Description: This contribution presents ideas, how crack propagation in three-dimensional solids composed of anisotropic materials can be predicted using the Griffith energy principle. Since the work of Irwin the change of potential energy caused by a straight elongation of a crack in an isotropic two-dimensional homogeneous structure can be expressed in quadratic terms of the stress intensities at the crack tip. This result was generalized in the last decades using methods of asymptotic analysis by many authors [1] to more complicated geometries, to anisotropic and inhomogeneous materials. With the energy release rate at hand, quasi-static scenarios of crack propagation can be simulated for plane problems [2], but this is still a complicated task for three-dimensional problems [3]. We show an idea how the change of energy caused by propagation of a crack surface in a fully three-dimensional solid of nearly arbitrary shape can be computed in anisotropic materials. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
    Electronic ISSN: 1617-7061
    Topics: Mathematics , Physics , Technology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...