ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2014-12-06
    Description: In this paper, we develop verifiable sufficient conditions and computable performance bounds of $ell_{1}$ -minimization based sparse recovery algorithms in both the noise-free and noisy cases. We define a family of quality measures for arbitrary sensing matrices as a set of optimization problems, and design polynomial-time algorithms with theoretical global convergence guarantees to compute these quality measures. The proposed algorithms solve a series of second-order cone programs, or linear programs. We derive performance bounds on the recovery errors in terms of these quality measures. We also analytically demonstrate that the developed quality measures are non-degenerate for a large class of random sensing matrices, as long as the number of measurements is relatively large. Numerical experiments show that, compared with the restricted isometry based performance bounds, our error bounds apply to a wider range of problems and are tighter, when the sparsity levels of the signals are relatively low.
    Print ISSN: 1053-587X
    Electronic ISSN: 1941-0476
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...