ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-09
    Description: We present two estimators to quantify the angular power spectrum of the sky signal directly from the visibilities measured in radio interferometric observations. This is relevant for both the foregrounds and the cosmological 21-cm signal buried therein. The discussion here is restricted to the Galactic synchrotron radiation, the most dominant foreground component after point source removal. Our theoretical analysis is validated using simulations at 150 MHz, mainly for GMRT and also briefly for Low-Frequency Array. The Bare Estimator uses pairwise correlations of the measured visibilities, while the Tapered Gridded Estimator uses the visibilities after gridding in the uv plane. The former is very precise, but computationally expensive for large data. The latter has a lower precision, but takes less computation time which is proportional to the data volume. The latter also allows tapering of the sky response leading to sidelobe suppression, an useful ingredient for foreground removal. Both estimators avoid the positive bias that arises due to the system noise. We consider amplitude and phase errors of the gain, and the w -term as possible sources of errors. We find that the estimated angular power spectrum is exponentially sensitive to the variance of the phase errors but insensitive to amplitude errors. The statistical uncertainties of the estimators are affected by both amplitude and phase errors. The w -term does not have a significant effect at the angular scales of our interest. We propose the Tapered Gridded Estimator as an effective tool to observationally quantify both foregrounds and the cosmological 21-cm signal.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...