ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2014-11-05
    Description: Recent work on hyperspectral image (HSI) unmixing has addressed the use of overcomplete dictionaries by employing sparse models. In essence, this approach exploits the fact that HSI pixels can be associated with a small number of constituent pure materials. However, unlike traditional least-squares-based methods, sparsity-based techniques do not require a preselection of endmembers and are thus able to simultaneously estimate the underlying active materials along with their respective abundances. In addition, this perspective has been extended so as to exploit the spatial homogeneity of abundance vectors. As a result, these techniques have been reported to provide improved estimation accuracy. In this letter, we present an alternative approach that is able to relax, yet exploit, the assumption of spatial homogeneity by introducing a model that captures both similarities and differences between neighboring abundances. In order to validate this approach, we analyze our model using simulated as well as real hyperspectral data acquired by the HyMap sensor.
    Print ISSN: 1545-598X
    Electronic ISSN: 1558-0571
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...