ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-09-30
    Description: Bacterial flagellar motors are energized by a proton (H + ) or sodium ion (Na + ) motive force. The motor torque is generated by the interactions between a rotor and about a dozen stators at the interface. MotAB-type stators use H + , whereas MotPS- and PomAB-type stators use Na + as the coupling ion. In Escherichia coli , the cytoplasmic loop of MotA contains charged residues that interact with conserved charged residues in a rotor protein FliG. Bacillus subtilis has two distinct stator elements MotAB and MotPS. Both stator elements contribute to torque generation by the flagellar motor. To clarify the roles of conserved charged residues in the cytoplasmic loops of MotA and MotP in flagellar rotation, we performed site-directed mutagenesis and analysed motility as well as the relative expression levels of mutant Mot proteins. The motility of the majority of these mutants was reduced compared with that of the wild-type, but was observed at a significant level compared with that of a motAB motPS mutant. From the expression levels and the decrease in the motility, we propose that MotA-E98, MotA-E102, MotP-R94, MotP-K95 and MotP-E107 may be responsible for flagellar rotation.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...