ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-14
    Description: Background: The 14-3-3 (YWHA) proteins are highly conserved in higher eukaryotes, participate in various cellular signaling pathways including cell cycle regulation, development and growth. Our previous studies demonstrated that 14-3-3ε (YWHAE) is responsible for maintaining prophase | arrest in mouse oocyte. However, roles of 14-3-3ε in the mitosis of fertilized mouse eggs have remained unclear. Here, we showed that 14-3-3ε interacts and cooperates with CDC25B phosphorylated at Ser321 regulating G2/M transition of mitotic progress of fertilized mouse eggs. Results: Disruption of 14-3-3ε expression by RNAi prevented normal G2/M transition by inhibition of MPF activity and leaded to the translocation of CDC25B into the nucleus from the cytoplasm. Overexpression of 14-3-3ε-WT and unphosphorylatable CDC25B mutant (CDC25B-S321A) induced mitotic resumption in dbcAMP-arrested eggs. In addition, we examined endogenous and exogenous distribution of 14-3-3ε and CDC25B. Endogenous 14-3-3ε and CDC25B were co-localized primarily in the cytoplasm at the G1, S, early G2 and M phases whereas CDC25B was found to accumulate in the nucleus at the late G2 phase. Upon coexpression with RFP–14-3-3ε, GFP–CDC25B–WT and GFP–CDC25B–S321A were predominantly cytoplasmic at early G2 phase and then GFP–CDC25B–S321A moved to the nucleus whereas CDC25B-WT signals were observed in the cytoplasm without nucleus accumulation at late G2 phase at presence of dbcAMP. Conclusions: Our data indicate that 14-3-3ε is required for the mitotic entry in the fertilized mouse eggs. 14-3-3ε is primarily responsible for sequestering the CDC25B in cytoplasm and 14-3-3ε binding to CDC25B-S321 phosphorylated by PKA induces mitotic arrest at one-cell stage by inactivation of MPF in fertilized mouse eggs.
    Electronic ISSN: 1471-213X
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...