ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2014-08-13
    Description: The observation of seismic hum from 2 to 20 mHz, also known as Earth's background free oscillations, has been established. Recent observations by broad-band seismometers show simultaneous excitation of Love waves (fundamental toroidal modes) and Rayleigh waves (fundamental spheroidal modes). The excitation amplitudes above 10 mHz can be explained by random shear traction sources on Earth's surface. With estimated source distributions, the most likely excitation mechanism is a linear coupling between ocean infragravity waves and seismic surface waves through seafloor topography. Observed Love and Rayleigh wave amplitudes below 5 mHz suggest that surface pressure sources could also contribute to their excitations, although the amplitudes have large uncertainties due to the high noise levels of the horizontal components. To quantify the observation, we develop a new method for estimation of the source spectra of random tractions on Earth's surface by modelling cross-spectra between pairs of stations. The method is to calculate synthetic cross-spectra for spatially isotropic and homogeneous excitations by random shear traction and pressure sources, and invert them with the observed cross-spectra to obtain the source spectra. We applied this method to the IRIS, ORFEUS, and F-net records from 618 stations with three components of broad-band seismometers for 2004–2011. The results show the dominance of shear traction above 5 mHz, which is consistent with past studies. Below 5 mHz, however, the spectral amplitudes of the pressure sources are comparable to those of shear traction. Observed acoustic resonance between the atmosphere and the solid Earth at 3.7 and 4.4 mHz suggests that atmospheric disturbances are responsible for the surface pressure sources, although non-linear ocean wave processes are also candidates for the pressure sources. Excitation mechanisms of seismic hum should be considered as a superposition of the processes of the solid Earth, atmosphere and ocean as a coupled system.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...