ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-07-04
    Description: Advances in observational, theoretical and computational technologies have made it possible for automatic, real-time solutions of the focal mechanisms of earthquake point sources. However, for earthquakes of moderate and greater magnitudes, the complexity of the source kinematic processes often requires additional characteristics on the source rupture in order to make seismotectonic inferences and to explain the observed directivity effects of the radiation of seismic energy. We develop an efficient and effective approach to determining the average finite-rupture models of moderate earthquakes by fitting synthetic and recorded broadband waveforms. A Green's tensor database is established using 3-D structural model with surface topography to enable rapid evaluations of accurate synthetic seismograms needed for source parameter inversions without the need for high-performance computing. We take a two-step strategy: In the first step, a point-source model is determined by a grid search for the best fault-plane solution. Then, taking the two nodal planes in the point-source model as candidates of the actual fault plane, a second grid search is carried out over a suite of simplified finite-rupture models to determine the optimal direction and speed of the integrated rupture of the finite source. We applied our method to four moderate events ( M W 6) in southeastern Taiwan. Results show that our technique provides an effective choice in semi-automatic, near real-time determinations of finite-source parameters for earthquake hazard assessment and mitigation purposes.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...