ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-03-01
    Description: A need for more accurate flood inundation maps has recently arisen due to the increasing frequency and extremity of flood events. The accuracy of flood inundation maps is determined by the uncertainty propagated from all of the variables involved in the overall process of flood inundation modeling. Despite our advanced understanding of flood progression, it is impossible to eliminate the uncertainty due to the constraints involving cost, time, knowledge, and technology. Nevertheless, uncertainty analysis in flood inundation mapping can provide useful information for flood-risk management. The twin objectives of this study were firstly to estimate the propagated uncertainty rates of key variables in flood inundation mapping by using the first-order approximation (FOA) method and secondly to evaluate the relative sensitivities of the model variables by using the Hornberger–Spear–Young (HSY) method. Monte Carlo simulations using the Hydrologic Engineering Center's River Analysis System (HEC–RAS) and triangle-based interpolation were performed to investigate the uncertainty arising from discharge, topography, and Manning's n in the East Fork of the White River near Seymour, Indiana, and in Strouds Creek in Orange County, North Carolina. We found that the uncertainty of a single variable is propagated differently to the flood inundation area depending on the effects of other variables in the overall process. The uncertainty was linearly/nonlinearly propagated corresponding to valley shapes of the reaches. In addition, the HSY sensitivity analysis revealed the topography of Seymour reach and the discharge of Strouds Creek to be major contributors to the change of flood inundation area. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...