ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-26
    Description: We investigate the effect of propagation of cosmic ray electrons (CRE) on the non-thermal (NTH; synchrotron)–far-infrared correlations in M 31 and M 33. The thermal (TH) and NTH emission components of the radio continuum emission at 1.4 GHz and one higher frequency are compared with dust emission from M 31 and M 33 using Spitzer data. In both galaxies the TH emission is linearly correlated with the emission from warm dust (24 μ m, 70 μ m), but the power laws of the NTH–FIR correlations have exponents b  〈 1 that increase with increasing frequency. Furthermore, the values of b for M 33 are significantly smaller ( b  ~= 0.4) than those for M 31 ( b  ~= 0.6). We interpret the differences in b as differences in the diffusion length of the CRE. We estimate the diffusion length in two ways: (1) by smoothing the NTH emission at the higher frequency until the correlation with NTH emission at 1.4 GHz has b  = 1, and (2) by smoothing the TH emission until the correlation with the NTH emission at the same frequency has b  = 1, assuming that the TH emission represents the source distribution of the CRE. Our smoothing experiments show that M 31 only has a thin NTH disc with a scale height of h  = 0.3–0.4 kpc at 1.4 GHz, whereas M 33 has a similar thin disc as well as a thick disc with scale height h thick  ~= 2 kpc. In the thin discs, the (deprojected) diffusion length at 1.4 GHz is ~=1.5 kpc, yielding a diffusion coefficient of ~=2 10 28 cm 2 s –1 . The structure, strength and regularity of the magnetic field in a galaxy as well as the existence of a thick disc determine the diffusion of the CRE, and hence, the power-law exponent of the NTH–FIR correlations.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...