ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-30
    Description: Wound healing is a major problem in diabetic patients and current treatments have met with limited success. We evaluated the treatment of excisional and diabetic wounds using a stem cell isolated from the human umbilical cord Wharton's jelly (hWJSC) that shares unique properties with embryonic and adult mesenchymal stem cells. hWJSCs are non-controversial, available in abundance, hypo-immunogenic, non-tumorigenic, differentiate into keratinocytes and secrete important molecules for tissue repair. When human skin fibroblasts (CCD) in conventional scratch-wound assays were exposed to hWJSC-conditioned medium (hWJSC-CM) the fibroblasts at the wound edges migrated and completely covered the spaces by day 2 compared to controls. The number of invaded cells, cell viability, total collagen, elastin and fibronectin levels were significantly greater in the hWJSC-CM treatment arm compared to controls ( p  〈 0.05). When a single application of green fluorescent protein (GFP)-labelled hWJSCs (GFP-hWJSCs) or hWJSC-CM was administered to full-thickness murine excisional and diabetic wounds, healing rates were significantly greater compared to controls ( p  〈 0.05). Wound biopsies collected at various time points showed the presence of green GFP-labelled hWJSCs, positive human keratinocyte markers (cytokeratin, involucrin, filaggrin) and expression of ICAM-1, TIMP-1 and VEGF-A. On histology, the GFP-hWJSCs and hWJSC-CM treated wounds showed reepithelialisation, increased vascularity and cellular density and increased sebaceous gland and hair follicle numbers compared to controls. hWJSCs showed increased expression of several miRNAs associated with wound healing compared to CCDs. Our studies demonstrated that hWJSCs enhance healing of excisional and diabetic wounds via differentiation into keratinocytes and release of important molecules. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...