ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-06-11
    Description: Estimation of aerosol water and chemical composition from AERONET at Cabauw, the Netherlands Atmospheric Chemistry and Physics Discussions, 13, 15191-15232, 2013 Author(s): A. J. van Beelen, G. J. H. Roelofs, O. P. Hasekamp, J. S. Henzing, and T. Röckmann Remote sensing of aerosols provides important information on the atmospheric aerosol abundance. However, due to the hygroscopic nature of aerosol particles observed aerosol optical properties are influenced by atmospheric humidity, and the measurements do not unambiguously characterize the aerosol dry mass and composition which complicates the comparison with aerosol models. In this study we derive aerosol water and chemical composition by a modeling approach that combines individual measurements of remotely sensed aerosol properties (e.g. optical thickness, single scattering albedo, refractive index and size distribution) from an AERONET (Aerosol Robotic Network) sun-photometer with radiosonde measurements of relative humidity. The model simulates water uptake by aerosols based on the chemical composition and size distribution. A minimization method is used to calculate aerosol composition and concentration, which are then compared to in situ measurements from the Intensive Measurement Campaign At the Cabauw Tower (IMPACT, May 2008, the Netherlands). Computed concentrations show reasonable agreement with surface observations and follow the day-to-day variability in observations. Total dry mass (33 ± 12 μg m −3 ) and black carbon concentrations (0.7 ± 0.3 μg m −3 ) are generally accurately computed. The uncertainty in the AERONET (real) refractive index (0.025–0.05) introduces larger uncertainty in the modeled aerosol composition (e.g. sulfates, ammonium nitrate or organic matter) and leads to an uncertainty of 0.1–0.25 in aerosol water volume fraction. Water volume fraction is highly variable depending on composition, up to 〉0.5 at 70–80% and
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...