ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-06-07
    Description: CO 2 /N 2 gas separation was performed over a nanocrystalline zeolite tetraethylammonium (TEA)-beta membrane prepared on a stainless-steel porous disc by repeated hydrothermal crystallization. Two to three consecutive hydrothermal syntheses were required to form a membrane comprised of a continuous and compact layer of zeolite beta nanocrystals on the support. The membrane TEA-BEA3 obtained by three consecutive syntheses, in which the membrane from two consecutive syntheses was used as support, exhibited the highest structural order. When the separation experiment was performed over this membrane without applying any external applied pressure, 100 % selectivity of CO 2 over N 2 was observed. The separation was driven by differences in chemical potentials of the molecules generated only by the adsorption-desorption behavior of the gases into the membrane. The novel zeolite TEA-beta membrane provided promising results for the separation of small gas molecules due to the combined influence of diffusion and sorption selectivity. Nanocrystalline zeolite tetraethylammonium (TEA)-beta membranes were prepared by repeated coating of zeolite nanocrystals via hydrothermal crystallization from a colloidal solution over a porous stain-less-steel disc support. When the separation experiment was performed without applying any external pressure, a CO 2 selectivity over N 2 of 100 % could be achieved.
    Print ISSN: 0930-7516
    Electronic ISSN: 1521-4125
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...