ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2012-12-13
    Description: In this paper, we investigate the challenging problem of joint source and relay optimization for two-way linear non-regenerative multiple-input multiple-output (MIMO) relay communication systems. We derive the optimal structure of the source and relay precoding matrices when linear minimal mean-squared error (MMSE) receivers are used at both destinations in the relay system. We show that for a broad class of frequently used objective functions for MIMO communications such as the MMSE, the maximal mutual information (MMI), and the minimax MSE, the optimal relay and source matrices have a general beamforming structure. This result includes existing works as special cases. Based on this optimal structure, a new iterative algorithm is developed to jointly optimize the relay and source matrices. We also propose a novel suboptimal relay precoding matrix design which significantly reduces the computational complexity of the optimal design with only a marginal performance degradation. Interestingly, we show that this suboptimal relay matrix is indeed optimal for some special cases. The performance of the proposed algorithms are demonstrated by numerical simulations. It is shown that the novel minimax MSE-based two-way relay system has a better bit-error-rate (BER) performance compared with existing two-way relay systems using the MMSE and the MMI criteria.
    Print ISSN: 1053-587X
    Electronic ISSN: 1941-0476
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...