ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE) ; American Society of Mechanical Engineers (ASME)
    Publication Date: 2012-09-25
    Description: In this paper, we describe a method of adaptive feedforward control that can achieve zero residual vibration in rest-to-rest motion of a vibratory system. When a finite impulse response filter is used to preshape a command input, zero residual vibration is achieved for any input signal if the impulse response of the filter satisfies a condition of orthogonality with respect to the impulse response of the system under control. An equivalent condition involving sets of measured I/O data is derived that forms the basis of a direct method of adaptively tuning filter coefficients during motion. The approach requires no prior model of the system and can be applied to multimode and multiinput systems under arbitrary and nonrepetitive motions. Versions of the algorithm employing recursive least-squares techniques are developed and analyzed. As a special case of the general adaptation problem, tuning of impulse-based shapers with fixed impulse timings can also be achieved. An experimental implementation on a two-link rigid-flexible manipulator is presented. The method is thereby shown to be realizable and effective for real-world motion control problems.
    Print ISSN: 1083-4435
    Electronic ISSN: 1941-014X
    Topics: Electrical Engineering, Measurement and Control Technology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...