ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-09-11
    Description: CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation, and application Geoscientific Model Development Discussions, 5, 2705-2744, 2012 Author(s): J. Tang, W. J. Riley, C. D. Koven, and Z. M. Subin To improve regional and global biogeochemistry modeling and climate predictability, we have developed a generic reactive transport module for the land model CLM4 (called CLM4-BeTR (Biogeochemical Transport and Reactions)). CLM4-BeTR represents the transport, interactions, and biotic and abiotic transformations of an arbitrary number of tracers (aka chemical species) in an arbitrary number of phases (e.g. dissolved, gaseous, sorbed, aggregate). An operator splitting approach was employed and consistent boundary conditions were derived for each modeled sub-process. Tracer fluxes, associated with hydrological processes such as surface run-on and run-off, belowground drainage, and ice to liquid conversion were also computed consistently with the bulk water fluxes calculated by the soil physics module in CLM4. The transport code was evaluated and found be in good agreement with several analytical test cases. The model was then applied at the Harvard Forest site with a representation of depth-dependent belowground biogeochemistry. The results indicated that, at this site, (1) CLM4-BeTR was able to simulate soil-surface CO 2 effluxes and soil CO 2 profiles accurately; (2) the transient surface CO 2 effluxes calculated based on the tracer transport mechanism were in general not equal to the belowground CO 2 production rates and that their differences varied according to the seasonal cycle of soil physics and biogeochemistry; (3) losses of CO 2 through processes other than surface gas efflux were less than 1% of the overall soil respiration; and (4) the contributions of root respiration and heterotrophic respiration have distinct temporal signals in surface CO 2 effluxes and soil CO 2 concentrations. The development of CLM4-BeTR will allow detailed comparisons between ecosystem observations and predictions and insights to the modeling of terrestrial biogeochemistry.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...