ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2012-09-08
    Description: Coverage problem is a fundamental issue in wireless ad hoc and sensor networks. Previous techniques for coverage scheduling often require accurate location information or range measurements, which cannot be easily obtained in resource-limited ad hoc and sensor networks. Recently, a method based on algebraic topology is proposed to achieve coverage verification using only connectivity information. The topological method sheds some light on the issue of location-free coverage. Unfortunately, the needs of centralized computation and rigorous restriction on sensing and communication ranges greatly limit the applicability in practical large-scale distributed sensor networks. In this work, we make the first attempt toward establishing a graph theoretical framework for connectivity-based coverage with configurable coverage granularity. We propose a novel coverage criterion and scheduling method based on cycle partition. Our method is able to construct a sparse coverage set in a distributed manner, using purely connectivity information. Compared with existing methods, our design has a particular advantage, which permits us to configure or adjust the quality of coverage by adequately exploiting diverse sensing ranges and specific requirements of different applications. We formally prove the correctness and evaluate the effectiveness of our approach through extensive simulations and comparisons with the state-of-the-art approaches.
    Print ISSN: 0018-9340
    Electronic ISSN: 1557-9956
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...