ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 International Journal of Hydrogen Energy, Volume 44, Issue 42〈/p〉 〈p〉Author(s): Rami S. El-Emam, Ibrahim Dincer, Calin Zamfirescu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Nuclear energy is considered a key alternative to overcome the environmental issues caused by fossil fuels. It offers opportunities with an improved operating efficiency and safety for producing power, synthetic fuels, delivering process heat and for multigeneration applications. The high-temperature nuclear reactors, although possess great potential for integration with thermochemical water-splitting cycles for hydrogen production, are not yet commercially established. Current nuclear reactor designs providing heat at relatively low temperature can be utilized to produce hydrogen using thermochemical cycles if the temperature of their thermal heat is increased. In this paper, a hybrid chemical-mechanical heat pump system is proposed for upgrading the heat of the Enhanced CANDU (EC6) reactor design to the quality required for the copper-chlorine (Cu–Cl) hybrid thermochemical water splitting cycle operating at 550–600 °C. A modification to the heat pump is proposed to bring the heat to temperature higher than 650 °C with operating coefficient of performance estimated as 0.65.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0360-3199
    Electronic ISSN: 1879-3487
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...