ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Abstract While power‐law distributions in seismic moment and inter‐event times are ubiquitous in regional earthquake catalogs, the statistics of individual faults remains controversial. Continuum fault models without heterogeneity typically produce characteristic earthquakes or a narrow range of sizes, leading to the view that regional statistics originate from interaction of multiple faults. I present theoretical arguments and numerical simulations demonstrating that seismicity on homogeneous planar faults can span several orders of magnitude in rupture dimensions and inter‐event times, if the fault dimension W is sufficiently large compared to a characteristic length Lcrit, related to the nucleation dimension. Large faults are increasingly less characteristic, with the fraction of system‐size ruptures proportional to (Lcrit/W)1/2. Earthquake statistics for large W/Lcrit is remarkably close to nature, exhibiting Omori decay and power‐law distributed rupture lengths. Simple crack models are consistent with a Gutenberg‐Richter distribution with b=3/4, and provide a physical basis for these distributions on individual faults.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...