ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈p〉We investigated the roles of covalent bonding, separation of surface oxygen, and electrolyte pH on the oxygen evolution reaction (OER) on transition metal oxides by comparing catalytic onset potentials and activities of CaCoO〈sub〉3〈/sub〉 and SrCoO〈sub〉3〈/sub〉. Both cubic, metallic perovskites have similar Co〈sup〉IV〈/sup〉 intermediate spin states and onset potentials, but a substantially smaller lattice parameter and shorter surface oxygen separation make CaCoO〈sub〉3〈/sub〉 a more stable catalyst with increased OER activity. The onset potentials are similar, occurring where H〈sup〉+〈/sup〉 is removed from surface -OH〈sup〉–〈/sup〉, but two competing surface reactions determine the catalytic activity. In one, the surface -O〈sup〉–〈/sup〉 is attacked by electrolyte OH〈sup〉–〈/sup〉 to form the surface -OOH〈sup〉–〈/sup〉; in the other, two -O〈sup〉–〈/sup〉 form a surface peroxide ion and an oxygen vacancy with electrolyte OH〈sup〉–〈/sup〉 attacking the oxygen vacancy. The second pathway can be faster if the surface oxygen separation is smaller.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...