ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈p〉Publication date: 24 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 3〈/p〉 〈p〉Author(s): Keisuke Maruyama, Hiroyuki Kaiya, Mikiya Miyazato, Noboru Murakami, Keiko Nakahara, Kouhei Matsuda〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Neuromedin U (NMU) plays important roles in energy homeostasis in rodents and birds. Previously, our group has isolated four cDNAs encoding precursor proteins of NMU from the goldfish brain and gut, and it was assumed that these transcripts are produced by alternative splicing. We have also demonstrated that intracerebroventricular (ICV) injection of putative goldfish NMU inhibits food intake. However, as native goldfish NMU has not yet been identified, we attempted to purify it from goldfish brain and gut extracts. To assess NMU activity in fractions at each purification step, we measured changes in the intracellular concentrations of Ca〈sup〉2+〈/sup〉 using HEK293 cells expressing goldfish NMU-R1 or -R2. We isolated a 25-amino-acid peptide (NMU-25) from the brain and gut and found that its primary structure is similar to that of mammalian NMU. Another 21-amino-acid peptide (NMU-21) was purified from the brain, but not from the gut. Furthermore, a 9-amino-acid peptide (NMU-9) identical to the C-terminus of NMU-21 and -25 was also isolated from the brain and gut. Treatment with synthetic NMU-9, -21 and -25 dose-dependently increased the intracellular Ca〈sup〉2+〈/sup〉 concentration in mammalian cells expressing goldfish NMU-R1 and -R2. We also examined the effect of ICV-administered synthetic goldfish NMUs on goldfish food intake. NMU-25 inhibited food intake to the same degree as NMU-21. However, the inhibitory effect of NMU-9 was slightly weaker than those of NMU-21 and -25. These results indicate that several molecular forms of NMU exist in the goldfish brain and gut, and that all of them play physiological roles via NMU-R1 and NMU-R2.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...