ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈p〉Publication date: September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Transportation Research Part D: Transport and Environment, Volume 74〈/p〉 〈p〉Author(s): Qunshan Zhao, Scott B. Kelley, Fan Xiao, Michael J. Kuby〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Electric drive vehicles (plug-in electric vehicle or hydrogen fuel cell vehicles) have been promoted by governments to foster a more sustainable transportation future. Wider adoption of these vehicles, however, depends on the availability of a convenient and reliable refueling/recharging infrastructure. This paper introduces a path-based, multi-scale, scenario-planning modeling framework for locating a system of alternative-fuel stations. The approach builds on (1) the Flow Refueling Location Model (FRLM), which assumes that drivers stop along their origin-destination routes to refuel, and checks explicitly whether round trips can be completed without running out of fuel, and (2) the Freeway Traffic Capture Method (FTCM), which assesses the degree to which drivers can conveniently reach sites on the local street network near freeway intersections. This paper extends the FTCM to handle cases involving clusters of nearby freeway intersections, which is a limitation of its previous specification. Then, the cluster-based FTCM (CFTCM) is integrated with the FRLM and the DFRLM (FRLM with Deviations) to better conduct detailed geographic optimization of this multi-scale location planning problem. The main contribution of this research is the introduction of a framework that combines multi-scale planning methods to more effectively inform the early development stage of hydrogen refueling infrastructure planning. The proposed multi-scale modeling framework is applied to the Hartford, Connecticut region, which is one of the next areas targeted for fuel-cell vehicle (FCV) market and infrastructure expansion in the United States. This method is generalizable to other regions or other types of fast-fueling alternative fuel vehicles.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1361-9209
    Electronic ISSN: 1879-2340
    Topics: Architecture, Civil Engineering, Surveying , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...