ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈p〉Publication date: 10 November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Science of The Total Environment, Volume 690〈/p〉 〈p〉Author(s): Yangyang Liu, Qian Wang, Zhaoying Zhang, Linjing Tong, Zhenqian Wang, Jianlong Li〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Improving our understanding of the impacts of climate variation and human activities on grassland dynamics is heightened by expectations that climate variation and human activities may induce grassland degradation. An accurate evaluation of the respective impacts of climate variation and human activities on grassland dynamics is crucial to understand the grassland degradation mechanism and to control the degraded grassland. In this study, net primary productivity (NPP) was selected as an indicator to reflect grassland dynamics. Meanwhile, the potential NPP (PNPP) and human-induced NPP (HNPP) calculated as the difference of PNPP and actual ANPP (ANPP) were used to assess the relative effects of climate variation and human activities on grassland NPP changes in China during 2000–2013. Results of grassland ANPP showed an overall increase than decrease in productivity (81.21% vs 18.79%) from 2000 to 2013. For the increase of ANPP, the relative contribution of climate variation and human activities to grassland NPP changes were 41.45% and 45.22%, respectively. Climate variation was the dominant factor that induced the increase in ANPP mainly in areas of Sichuan, Gansu, Ningxia and Inner Mongolia. An increase in Human-dominated ANPP mainly occurred in Tibet, Qinghai and Xinjiang. The decrease in ANPP is principally controlled by the effect of human activities than that of climate variation, especially in Inner Mongolia. Meanwhile, climate-dominated ANPP increase and human-dominated ANPP decrease mainly occurred in plain grassland, desert grassland and meadow across the six types of grasslands in China. Furthermore, in alpine sub-alpine meadow and alpine sub-alpine, while climate-dominated ANPP of grassland was found to be decreased, an increase in human-dominated ANPP was detected. The increase in precipitation and the implementation of ecological restoration programs were found to be effective in inducing the noticeable increased grassland ANPP since 2003. The findings of the current research recommend that the Chinese government should continue to implement the prohibiting graze policy across the country and extensively strengthen the implementation of the policy in Inner Mongolia and North Xinjiang, particularly in plain grassland, desert grassland and meadow.〈/p〉〈/div〉 〈/div〉 〈div xml:lang="en"〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0048969719330761-ga1.jpg" width="434" alt="Unlabelled Image" title="Unlabelled Image"〉〈/figure〉〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0048-9697
    Electronic ISSN: 1879-1026
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...