ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Abstract Experimental data show that inelastic straining occurs even at very low pressure before and during “brittle” fracturing. This process is therefore investigated within the framework of elastoplasticity using 2D, 3‐layer FD modeling. The constitutive model includes both tensile and shear failure mechanisms coupled at the level of the strain softening law. The modeling results show that sets of parallel joints initiate as pure dilation bands, the narrow σ3‐normal bands of localized dilatant damage (inelastic deformation). The band thickness, length, and the initial strain softening degree within it are proportional to the ductility of the material, which increases with the effective stress level (σ1) or pressure. The strength reduction within the bands is accelerated at a certain stage, and the strength locally reaches zero resulting in fracture initiation. The initial fracture then propagates in mode I following the propagating band. The fracture (joint) appears thus as a band of damaged material with the increased porosity, which is maximum along the axial zone of the band where the material is completely broken. The damage is due to both tensile and shear mechanisms. The role of shear failure increases with the ductility (pressure) increase, which also leads to the band thickness increase. These processes can result in small (band thickness)‐scale shear fractures within the band, causing the increase in the roughness of fracture walls organized in plumose patterns typical of both natural and experimentally generated joints.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...