ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈span〉〈div〉ABSTRACT〈/div〉The influence of thermal maturity on porosity in shale samples from the Upper Devonian Duvernay Formation is examined. The samples span a maturity range from immature to the wet gas window. Porosity decreases from immature to the oil window, primarily because of compaction. Relatively high porosity of wet gas window samples is ascribed to formation of secondary organic pores, feldspar dissolution pores, and primary pore preservation by the quartz framework. The final decline in the porosity of the dry gas window samples is explained by greater compaction, the disappearance of secondary organic pores, and feldspar dissolution pores.Porosity correlates positively to quartz content and negatively to carbonate content; no relationship was evident between porosity and clay or total organic carbon content. No obvious correlations exist between rock composition and permeability except that SiO〈sub〉2〈/sub〉 content shows a weakly positive correlation to permeability. Permeability is highest in immature samples, which have the greatest pore and pore-throat sizes. Nitrogen adsorption and mercury injection analysis show that pore and pore-throat sizes decrease with increasing maturity.Visible pores, imaged by scanning electron microscopy and helium ion microscopy, exist as organic pores, including bubblelike pores developed within organic matter (OM) and fissure-type pores, intraparticle pores mainly developed within carbonate grains, and interparticle pores either within a clay-rich matrix or between rigid mineral grains. In immature samples, the primary pores are interparticle pores between clay minerals and other mineral grains. The OM fissures are ubiquitous in oil window samples, and secondary bubblelike OM–hosted pores are well developed within gas window samples.〈/span〉
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...