ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈p〉Publication date: 5 April 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 212〈/p〉 〈p〉Author(s): Smita Verma, Sandip A. Ghuge, V. Ravichandiran, Nihar Ranjan〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉G-quadruplexes are well-known DNA secondary structures which can be formed both within the DNA and the RNA sequences of the human genome. While many functions of G-quadruplex during cell regulatory events are still unknown, a number of reports have established their role in finding new cancer therapies. In this report, we provide a detailed account of Thioflavin T (ThT) interacting with a promoter gene (c-Myc) which has relevance in several types of human cancers. Using a variety of spectroscopic techniques, we have shown that the binding of ThT is selective to c-Myc G-quadruplex only, having poor interactions with the duplex DNA sequences. UV–Visible titration experiments show that binding involves stacking interactions which were further corroborated by CD experiments. Fluorescence studies showed that the binding of ThT to c-Myc G-quadruplex results in a large increase in the fluorescence emission spectrum of c-Myc G-quadruplex while the same to duplex DNAs was much poor. Binding of ThT to c-Myc G-quadruplex results in thermal stabilization of the quadruplex DNA by up to 7.4 °C and Job plot experiments demonstrated the presence of 1:1 and 2:1 ligand to quadruplex complexes. Finally, the docking study suggested that ThT stacks with the guanine bases in one of the grooves which is in agreement with the CD studies. These results are expected to provide leads into the design of new ThT analogs and derivatives for enhancing the stability and selectivity of new G-quadruplex targeting ligands.〈/p〉〈/div〉 〈/div〉 〈div xml:lang="en"〉 〈h5〉Graphical Abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S1386142518311144-ga1.jpg" width="500" alt="Unlabelled Image" title="Unlabelled Image"〉〈/figure〉〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1386-1425
    Electronic ISSN: 1873-3557
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...