ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: To better predict long-term performance of a remediation system, parameters of a numerical model should be constrained with care by calibrating with reliable experimental data. This study conducted sensitivity analyses for model parameters, which were shown to represent reasonably well the observed geochemical behaviors for the column experiments that evaluated evolving reactivity of granular iron for the treatment of trichloroethylene (TCE) resulting from precipitation of secondary minerals. The particular model parameters tested include iron corrosion rate, aragonite and Fe2(OH)2CO3 precipitation rates, and proportionality constants for each mineral. For sensitivity analyses, a specific parameter was systematically changed, while other parameters were fixed at the values for the base case. The ranges of parameters tested were determined based on the previous modeling study. The results showed that the most important and sensitive model parameters were secondary mineral precipitation rates. Also, not only absolute precipitation rate for each mineral but also relative precipitation rates among different minerals were important for system performance. With help of sensitivity analysis, the numerical model can be used as a predictive tool for designing an iron permeable reactive barrier (PRB) and can provide implications for the long-term changes in reactivity and permeability of the system.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...