ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉Improvement of global 3D Earth density and velocity models is based in part on measurements of Earth’s normal mode eigenfrequencies and splitting function coefficients. Despite many methods developed inconsistency in measurements still exists and it is difficult to understand which results are more precise, that is which methods introduce less systematic biases in the measurements. Therefore, the main goal of this study is to test the performances of typically used techniques in low-frequency normal mode studies: the optimal sequence estimation stacking method and the autoregressive method in the frequency domain, where validation of the estimates is performed with the phasor walkout method. Motivations for their utilization are their easy and fast implementation and their accurate performances when it comes to eigenfrequency estimates. For this purpose, we first perform the analysis with synthetic seismograms in order to evaluate how the station distributions and noise levels impact the estimates of eigenfrequencies and structure coefficients. Synthetic seismograms are calculated for a 3D realistic Earth model, which includes Earth’s rotation as well as ellipticity and other lateral heterogeneities. They were computed by means of normal mode summation and a perturbation theory for modes up to 1 mHz. The three methods above are also applied to long-period seismometer and superconducting gravimeter data recorded after six earthquakes of magnitude greater than 8.3. Finally, our study shows that the optimal sequence estimation is sensitive to the station distribution under the noise influence, while the autoregressive method for frequency estimation gives us reasonable estimates within the estimated error bars. Moreover, we present new estimates of eigenfrequencies and Q-factors for 〈sub〉0〈/sub〉S〈sub〉2, 0〈/sub〉S〈sub〉3, 2〈/sub〉S〈sub〉1〈/sub〉 and 〈sub〉3〈/sub〉S〈sub〉1〈/sub〉 multiplets. A new value for the 〈span〉c〈/span〉〈sub〉20〈/sub〉 structure coefficient of 〈sub〉0〈/sub〉S〈sub〉2〈/sub〉 multiplet −0.7233 ± 0.0623 μHz is obtained.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...