ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: 〈p〉Publication date: February 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 CATENA, Volume 173〈/p〉 〈p〉Author(s): Bao-jun Zhang, Guang-hui Zhang, Han-yue Yang, Hao Wang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Steep gully slopes are widespread and have been recognized as the main sediment source on the Loess Plateau. Different vegetation growth may lead to the differences in soil properties and plant roots, and thus likely affects soil resistance to flowing water erosion, reflected by rill erodibility and critical shear stress. However, few studies have been conducted to evaluate this effect on steep gully slopes on the Loess Plateau of China. This study was performed to investigate the effects of vegetation growth on soil resistance to flowing water erosion on steep gully slopes, and quantify the main potential influencing factors on the Loess Plateau. Three typical shrub communities and four typical grass communities that distributed on different gully slopes were selected. 240 undisturbed soil samples were collected from these seven gully slope lands and one slope farmland (control), and were subjected to detachment by overland flow under six different shear stresses (6.64 to 17.85 Pa). The results showed that the mean detachment capacity of slope farmland was 6.9 to 47.8 times greater than those of steep gully slopes covered with different plant communities. The rill erodibilities of steep gully slopes covered with different plant communities reduced greatly by 77.0% to 95.1% compared to the control slope. The critical shear stress of slope farmland (2.72 Pa) was only 57.2% and 39.6% of that of shrubland (4.76 Pa) and grassland (6.88 Pa). Both shrub and grass communities were effective in reducing soil detachment capacity and rill erodibility, and increasing critical shear stress on steep gully slopes. But the effects were more obvious for the grass communities. The differences in rill erodibility between slope farmland and gully slope lands were mainly explained by the changes in root mass density (82.4%). Plant roots had strong direct effects on increasing soil cohesion (0.78), organic matter content (0.56), and water stable aggregation (0.92). Rill erodibility was negatively related to root mass density as an exponential function (〈em〉p〈/em〉 〈em〉〈〈/em〉 0.05), and soil cohesion and water stable aggregation as power functions (〈em〉p〈/em〉 〈em〉〈〈/em〉 0.05). Critical shear stress was positively related to root mass density and soil water stable aggregation following a logarithmic function.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0341-8162
    Electronic ISSN: 1872-6887
    Topics: Geography , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...