ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    Elsevier
    In: Energy
    Publikationsdatum: 2018
    Beschreibung: 〈p〉Publication date: 15 December 2018〈/p〉 〈p〉〈b〉Source:〈/b〉 Energy, Volume 165, Part B〈/p〉 〈p〉Author(s): Jie Lin, Duc Thuan Bui, Ruzhu Wang, Kian Jon Chua〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The dew point evaporative cooler has been proposed to replace the mechanical vapor compression chiller in air sensible cooling, for its significantly larger energy efficiency and simpler system layout. Many of the existing studies focused on applying a first-law thermodynamic analysis to the dew point evaporative cooler, however, its performance involving the second-law thermodynamic assessment remains unclear. Therefore, in this paper, an exergy analysis of the counter-flow dew point evaporative cooler is conducted. The exergy performance of the dew point evaporative cooling process is examined by incorporating the first law of thermodynamics for energy and mass balances. A counter-flow dew point evaporative cooler prototype has been designed, fabricated and tested to investigate its cooling performance. A 2-D computational fluid dynamics (CFD) model is then formulated to simulate the flow, temperature and humidity fields of the cooler. The model agrees well with the acquired experimental data with the maximum discrepancy of ±5.6%. The exergy flow, efficiency and efficiency ratio of the cooler are discussed under various simulation conditions. Key findings that emerged from this study reveal that the saturated air state at ambient temperature is the rational dead state to properly describe the physical mechanisms involved in the dew point evaporative cooling process. The exergy efficiency ratio of the dew point evaporative cooler is greater than 1.0, highlighting a remarkable second-law efficiency for air conditioning applications.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0360-5442
    Digitale ISSN: 1873-6785
    Thema: Energietechnik
    Publiziert von Elsevier
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...