ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-04-05
    Description: The viscosity behavior of extrusion pastes comprised of a PVB melt and varying amounts of nano-zirconia powder have been explored with special emphasis on the impact of a dispersant to reduce the viscosity. In contrast to suspensions with nanopowders, the maximum solid loading in the highly viscous extrusion pastes studied is not limited by attractive interparticle forces. However, at a solid loading 〉30 vol% the pastes had too high viscosity to be processed due to the high number of adsorbed polymer molecules. By adding a decoupling agent that reduced the work of adhesion of the polymer molecules on the zirconia particles, the viscosity of the pastes could be lowered significantly. The calculated work of adhesion is consistent with the viscosity behavior of the feedstock and is confirmed by wetting angles that have been experimentally determined. It is shown that the effect of the dispersant cannot be explained by electrostatic or steric stabilization of the particles in the melt. A unifying scheme is proposed where the limiting factors “agglomeration” and “adsorption” for a high solid loading combined with the necessary mode of function of the dispersant are illustrated as a function of the viscosity of the medium and the particle size. The viscosity-lowering decoupling effect of the dispersant was a prerequisite for reaching a solid loading of 50 vol% in the additional feedstock development. The feedstock with 50 vol% nano-zirconia could be extruded to a tape and sintered to a relative density of 97% at 1200°C.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...