ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-02-25
    Description: Seasonal leaf dynamics for tropical evergreen forests in a process based global ecosystem model Geoscientific Model Development Discussions, 5, 639-681, 2012 Author(s): M. De Weirdt, H. Verbeeck, F. Maignan, P. Peylin, B. Poulter, D. Bonal, P. Ciais, and K. Steppe The influence of seasonal phenology in tropical humid forests on canopy photosynthesis remains poorly understood and its representation in global vegetation models highly simplified, typically with no seasonal variability of canopy leaf area properties taken into account. However, recent flux tower and remote sensing studies suggest that seasonal phenology in tropical rainforests exerts a large influence over carbon and water fluxes, with feedbacks that can significantly influence climate dynamics. A more realistic description of the underlying mechanisms that drive seasonal tropical forest photosynthesis and phenology could improve the correspondence of global vegetation model outputs with the wet-dry season biogeochemical patterns measured at flux tower sites. Here, we introduce a leaf Net Primary Production (NPP) based canopy dynamics scheme for evergreen tropical forests in the global terrestrial ecosystem model ORCHIDEE and validated the new scheme against in-situ carbon flux measurements. Modelled Gross Primary Productivity (GPP) patterns are analyzed in details for a flux tower site in French Guiana, in a forest where the dry season is short and where the vegetation is considered to have developed adaptive mechanisms against drought stress. By including leaf litterfall seasonality and a coincident light driven leaf flush and seasonal change in photosynthetic capacity in ORCHIDEE, modelled carbon and water fluxes more accurately represent the observations. The fit to GPP flux data was substantially improved and the results confirmed that by modifying canopy dynamics to benefit from increased light conditions, a better representation of the seasonal carbon flux patterns was made.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...