ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Spady, Blake L; Nay, Tiffany J; Rummer, Jodie L; Munday, Philip L; Watson, Sue-Ann (2019): Aerobic performance of two tropical cephalopod species unaltered by prolonged exposure to projected future carbon dioxide levels. Conservation Physiology, 7(1), https://doi.org/10.1093/conphys/coz024
    Publication Date: 2024-06-06
    Description: Squid and many other cephalopods live continuously on the threshold of their environmental oxygen limitations. If the abilities of squid to effectively take up oxygen are negatively affected by projected future carbon dioxide (CO2) levels in ways similar to those demonstrated in some fish and invertebrates, it could affect the success of squid in future oceans. While there is evidence that acute exposure to elevated CO2 has adverse effects on cephalopod respiratory performance, no studies have investigated this in an adult cephalopod after relatively prolonged exposure to elevated CO2 or determined any effects on aerobic scope. Here, we tested the effects of prolonged exposure (〉=20% of lifespan) to elevated CO2 levels (~1000 μatm) on the routine and maximal oxygen uptake rates, aerobic scope and recovery time of two tropical cephalopod species, the two-toned pygmy squid, Idiosepius pygmaeus and the bigfin reef squid, Sepioteuthis lessoniana. Neither species exhibited evidence of altered aerobic performance after exposure to elevated CO2 when compared to individuals held at control conditions. The recovery time of I. pygmaeus under both control and elevated CO2 conditions was less than 1 hour, whereas S. lessoniana required approximately 8 hours to recover fully following maximal aerobic performance. This difference in recovery time may be due to the more sedentary behaviours of I. pygmaeus. The ability of these two cephalopod species to cope with prolonged exposure to elevated CO2 without detriment to their aerobic performance suggests some resilience to an increasingly high CO2 world.
    Keywords: Aerobic scope of oxygen; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Behaviour; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Cleveland_Bay_OA; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Identification; Idiosepius pygmaeus; Laboratory experiment; Mantle, length; Mass; Mollusca; Number; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen uptake rate; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Recovery time; Registration number of species; Respiration; Salinity; Salinity, standard deviation; Sepioteuthis lessoniana; Sex; Single species; South Pacific; Species; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1479 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...