ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wendling, Carolin Charlotte; Fabritzek, Armin Georg; Wegner, K Mathias (2017): Population-specific genotype x genotype x environment interactions in bacterial disease of early life stages of Pacific oyster larvae. Evolutionary Applications, 10(4), 338-347, https://doi.org/10.1111/eva.12452
    Publication Date: 2023-01-13
    Description: The consequences of emerging marine diseases on the evolutionary trajectories of affected host populations in the marine realm are largely unexplored. Evolution in response to natural selection depends on the genetic variation of the traits under selection and the interaction of these traits with the environment (GxE). However, in the case of diseases, genotypes of pathogens add another dimension to this interaction. Therefore, the study of disease resistance needs to be extended to the interaction of host genotype, pathogen genotype and environment (GxGxE). In the present study we used a full-sib breeding design crossing two genetically differentiated populations of the Pacific oyster Crassostrea gigas (Thunberg, 1793), to determine the influence of host genotype, pathogen genotype and temperature on disease resistance. Based on a controlled infection experiment on two early life stages, i.e. D-larvae and Pediveliger larvae at elevated and ambient water temperatures we estimated disease resistance to allopatric and sympatric Vibrio sp. by measuring survival and growth within and between genetically differentiated oyster populations. In both populations survival was higher upon infection with sympatric Vibrio sp. indicating that disease resistance has a genetic basis and is dependent on host genotype. In addition we observed a significant GxGxE effect in D-larvae, where contrary to expectations, disease resistance was higher at warm than at cold temperatures. Using thermal reaction norms, we could further show, that disease resistance is an environment dependent trait with high plasticity, which indicates the potential for a fast acclimatization to changing environmental conditions. These population specific reaction norms disappeared in hybrid crosses between both populations which demonstrates that admixture between genetically differentiated populations can influence GxGxE interactions on larger scales.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...