ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-11-21
    Description: The values of the key atmospheric turbulence parameters (structure constants) for temperature and water vapor, that is, C(exp 2)(sub T), and C(exp 2)(sub Q), are highly dependent upon the vertical height within the atmosphere thus making it necessary to specify profiles of these values along the atmospheric propagation path. The remote sensing method suggested and described in this work makes use of a rapidly integrating microwave profiling radiometer to capture profiles of temperature and humidity through the atmosphere. The integration times of currently available profiling radiometers are such that they are approaching the temporal intervals over which one can possibly make meaningful assessments of these key atmospheric parameters. These integration times, coupled with the boundary effects of the Earths surface are, however, unconventional for turbulence characterization; the classical Kolmogorov turbulence theory and related 2/3 law for structure functions prevalent in the inertial subrange are no longer appropriate. An alternative to this classical approach is derived from first principles to account for the nuances of turbulent mechanics met with using radiometer sensing, that is, the large-scale turbulence driven by the various possible boundary conditions within the buoyancy subrange. Analytical expressions connecting the measured structure functions to the corresponding structure parameters are obtained. The theory is then applied to an experimental scenario involving radiometric profile measurements of temperature and shows very good results.
    Keywords: Geophysics
    Type: NASA/TP—2019-220300 , GRC-E-DAA-TN68884
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...