ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-11-14
    Description: "Heat pipes are being used on many spacecraft to acquire heat dissipated by the payload and transport the heat to a remote radiator. In instrument-level or spacecraft-level ground testing, many heat pipes are placed in a gravity-driven reflux mode where the condenser is well above the evaporator, resulting in the formation of a liquid pool at the bottom of the heat pipe. If a head load is applied to a site that is in contact with the liquid pool, the generated vapor will flow upward to the condenser and the condensate will fall back to the evaporator due the influence of gravity. Hence, the heat pipe can operate steadily under reflux mode because the heated site always has sufficient liquid supply to sustain the fluid flow. In contrast, when a heat load is applied to a site remote from the liquid pool, the heat pipe will be unable to transfer heat through liquid evaporation unless the heated site has a chance to be in contact with liquid. This can be accomplished by applying an additional heat load to the liquid pool to establish a reflux flow so that the remote site can capture the falling condensate. An experimental investigation was conducted to study the effect of gravity on the thermal performance of a heat pipe under reflux mode with multiple heat loads. An aluminum ammonia heat pipe with internal axial grooves was placed in a vertical position. Cooling was provided to the top of the heat pipe, and heat was applied to three sites below the condenser with various heat distributions. One of the heated sites was above the liquid pool, and two were in direct contact with the liquid pool. Test results showed that when a heat load was applied to either one or both of the lower sites, the heat pipe could run steadily under reflux mode. After a reflux flow had been established, a heat load could be applied to the upper site. If the upper site could capture sufficient liquid falling from the condenser to handle its heat load solely by liquid evaporation, the heat pipe could reach steady operation. Otherwise, the temperature of the upper site would oscillate due to its intermittent contact with the falling liquid. For a given heat load to the upper site, the amplitude of temperature oscillation decreased with an increasing heat load to the lower sites because there was more falling condensate available for the upper site to capture. Moreover, the temperature oscillation disappeared completely when the total heat loads to lower sites exceeded a threshold power, and the threshold power increased with an increasing heat load to the upper site."
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN71130 , International Mechanical Engineering Congress & Exposition (IMECE); Nov 08, 2019 - Nov 14, 2019; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...