ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-23
    Description: In order to perform long term missions with multiple objectives using a single space vehicle, there is a need to develop a highly efficient propulsion-navigation system that enables multi-mission capabilities, point-to-point operation and an extended operational lifetime. The majority of space propulsion systems are fuel-based and require the vehicle to carry and consume fuel as part of the mission. Once the fuel is consumed, the mission is terminated. Alternatively, a method that derives its acceleration, velocity and direction from solar photon pressure using a solar sail to capture photon momentum would eliminate the requirement of fuel and all the fuel-based propulsion components. The most important factors that govern the solar sail spacecrafts characteristic acceleration are the sail loading (how much total mass the solar sail has to carry) and the exposed sail area. This paper introduces several potential mission concepts that can be achieved using heliogyro-configured solar sail spacecraft. It then presents 30 potential configurations of heliogyro small spacecraft solar sail and design concepts, based on CubeSat-scale units from 6U to 48U (1U = a cube 10 cm on each side). The area of the sail and total CubeSat masses are used to calculate their characteristic accelerations, and these accelerations are equated to those of previous spacecraft using solar sail technologies; IKAROS, NanoSail-D and LightSail. The analyses in this paper predict that out of these 30 configurations, the 12U-4B(a) configuration has the maximum and the 45U-6B(a) configuration has the minimum characteristic accelerations of 190 and 70 times higher than the IKAROS, 49 and 18 times higher than the NanoSail-D, and 16 and 6 times higher than LightSail, respectively. Several blade deployment configurations, the jelly roll, and a hybrid heliogyro-jelly roll are introduced and compared to the standard reel configuration. The hybrid configurations are predicted to produce higher characteristic accelerations than the jelly roll configurations. The analyses of heliogyro configurations suggest that the amount of payload units (non-sail) when compared to the whole spacecraft allowable units should be less than 40% and the optimized amount, i.e. no empty payload units, is approximately 33% to produce characteristic accelerations 〉 0.7 mm/sq s. For the hybrid configuration, the results suggests that the number of payload units should be between 30 40% of the total units to produce a characteristic acceleration 〉 0.8 mm/sq s.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-23565 , Acta Astronautica|International Astronautical Congress (IAC); Oct 12, 2015 - Oct 16, 2015; Jerusalem; Israel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...