ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-19
    Description: This paper develops an atmospheric state estimator based on inertial acceleration and angular rate measurements combined with a vehicle aerodynamic model. The approach uses the navigation state of the vehicle to recast the vehicle aerodynamic model to be a function solely of the atmospheric state. Force and moment measurements are based on vehicle sensed accelerations and angular rates. These measurements are combined with an aerodynamic model and a KalmanSchmidt filter to estimate the atmospheric conditions. The method is applied to data from the Mars Science Laboratory mission, which landed the Curiosity rover on the surface of Mars in August 2012. The results of the estimation algorithm are compared with results from a flush air data sensing algorithm based on onboard pressure measurements on the vehicle forebody. The comparison indicates that the proposed method provides estimates consistent with the air data measurements, without the use of pressure transducers. Implications for future missions such as the Mars 2020 entry capsule are described.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NF1676L-26438 , Journal of Spacecraft and Rockets (ISSN 0022-4650) (e-ISSN 1533-6794); 55; 3; 599-610
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...