ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Ballistic limit equations define the failure of metallic Whipple shields in three parts: low velocity, shatter, and hypervelocity. Failure limits in the shatter regime are based on a linear interpolation between the onset of projectile fragmentation, and impulsive rupture of the shield rear wall. A series of hypervelocity impact tests have been performed on aluminum alloy Whipple shields to investigate failure mechanisms and performance limits in the shatter regime. Test results demonstrated a more rapid increase in performance than predicted by the latest iteration of the JSC Whipple shield BLE following the onset of projectile fragmentation. This increase in performance was found to level out between 4.0-5.0 km/s, with a subsequent decrease in performance for velocities up to 6.0 km/s. For a detached spall failure criterion, the failure limit was found to continually decrease up to a velocity of 7.0 km/s, substantially varying from the BLE, while for perforation-based failure an increase in performance was observed. An existing phenomenological ballistic limit curve was found to provide a more accurate reproduction of shield behavior that the BLE, however a number of underlying assumptions such as the occurrence of complete projectile fragmentation and the effect on performance of incipient projectile melt were found to be inaccurate. A cratering relationship based on the largest residual fragment size has been derived for application at velocities between 3.0-4.0 km/s, and was shown to accurately reproduce the trends of the experimental data. Further investigation is required to allow a full analytical description of shatter regime performance for metallic Whipple shields.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-19445 , Hypervelocity Impact Symposium; Apr 10, 2010 - Apr 15, 2010; Freiburg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...