ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-05
    Description: We calculate the intergalactic photon density as a function of both energy and redshift for 0〈z〈6 for photon energies from.003 eV to the Lyman limit cutoff at 13.6 eV in a (Omega)CDM universe with (Omega)(Lambda)=0.7 and (Omega)m=0.3. The basic features of our backward-evolution model for galaxies were developed in earlier papers by Malkan & Stecker. With a few improvements, we find that this evolutionary model gives predictions of new deep number counts from Spitzer, as well as a calculation of the spectral energy distribution of the diffuse infrared background, which are in good agreement with the data. We then use our calculated intergalactic photon densities to extend previous work on the absorption of high-energy Gamma-rays in intergalactic space owing to interactions with low-energy photons and the 2.7 K cosmic microwave background radiation. We calculate the optical depth of the universe, Tau , for Gamma-rays having energies from 4 GeV to 100 TeV emitted by sources at redshifts from 0 to 5. We also give an analytic fit with numerical coefficients for approximating (E(Gamma), z). As an example of the application of our results, we calculate the absorbed spectrum of the blazar PKS 2155-304 at z=0.117 and compare it with the spectrum observed by the HESS air Cerenkov Gamma-ray telescope array.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 648; Number 2, Part 1; 774-783
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...