ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Anticipating the implementation of advanced SiC/SiC composites into internally cooled airfoil components within the turbine section of future aero-propulsion engines, the primary objective of this study was to develop physics-based analytical and finite-element modeling tools to predict the effects of composite creep and stress relaxation at the airfoil leading edges, which will generally experience large thermal gradients at high temperatures. A second objective was to examine how some advanced NASA-developed SiC/SiC systems coated with typical EBC materials would behave as leading edge materials in terms of long-term steady-state operating temperatures. Because of the complexities introduced by mechanical stresses inherent in internally cooled airfoils, a simple cylindrical thin-walled tube model subjected to thermal stresses only is employed for the leading edge, thereby obtaining a best-case scenario for the material behavior. In addition, the SiC/SiC composite materials are assumed to behave as isotropic materials with temperature-dependent viscoelastic creep behavior as measured in-plane on thin-walled panels. Key findings include: (1) without mechanical stresses and for typical airfoil geometries, as heat flux is increased through the leading edge, life-limiting tensile crack formation will occur first in the hoop direction on the inside wall of the leading edge; (2) thermal gradients through all current SiC/SiC systems should be kept below approx.300 F at high temperatures to avoid this cracking; (3) at temperatures near the maximum operating temperatures of advanced SiC/SiC systems, thermal stresses induced by the thermal gradients will beneficially relax with time due to creep; (4) although stress relaxation occurs, the maximum gradient should still not exceed 300oF because of residual tensile stress buildup on the airfoil outer wall during cool-down; and (5) without film cooling and mechanical stresses, the NASA-developed N26 SiC/SiC system with thru-thickness Sylramic-iBN fiber reinforcement and a typical EBC coating has the potential of offering a maximum long-term steady-state operating temperature of approx.3100 F at the surface of the EBC.
    Keywords: Aircraft Design, Testing and Performance
    Type: 31st Annual Conference Composites Materials and Structures; Jan 22, 2007 - Jan 25, 2007; Daytona Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...